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Abstract

In this paper, we extend the scalar-potential finite-difference (SPFD) approach in order to consider arbitrarily shaped
time-harmonic field sources. The SPFD approach is commonly used to compute the currents induced by an externally
applied magnetic field in regions with weak, heterogeneous conductivities such as, e.g., the human body. We present
the extended scalar-potential finite-difference (Ex-SPFD) approach as a two step algorithm. In the first step, the excitation
is computed by solving the magnetoquasistatic curl–curl equation on a coarse grid that is well adapted for the field sources.
In the second step, the magnetic vector potential is prolongated onto a finer grid and a divergence correction inside the
conductor is applied. Using the Maxwell-grid-equations (MGEs) of the finite integration technique, a geometric discreti-
zation scheme for Maxwell�s equations, this new approach has been implemented in a parallel environment in order to
account for the memory-demanding high-resolution anatomy models used for the calculation of induced currents inside
the human body. We demonstrate the validity and the improved numerical performance of the new approach for a test
case. Finally, an application example of a human exposed to a realistic electromagnetic field source is presented.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An increasing demand to understand and quantify the interaction of electromagnetic fields with biological
tissue has arisen in public discussion throughout the past years, additionally fueled by recurring reports in the
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media. In this vast research area, it is necessary to consider epidemiological, biological and dosimetric studies
in order to derive basic restriction guidelines and minimize the possibility of harmful effects.

The exposure of the human body to ambient low-frequency magnetic fields results in an induced current
density distribution in the weak conductive biological tissue. Such fields can originate not only from strong
currents like in welding processes and magnetodynamic energy converters but also from electrical power lines
and domestic electrical devices. The induced current densities inside the body can result in an excitation of the
biological system. Above 10 mA/m2 visual phosphene inside the eye has been observed, and above 100 mA/m2

a direct stimulation of the muscles and the nervous system can occur [1]. Therefore, the International Com-
mission on non-ionizing radiation protection (ICNIRP) has proposed a basic restriction of 2 mA/m2 for the
general public [2] which was adapted by various governments throughout the world.

Since it is nearly impossible to measure electromagnetic quantities inside the human body in vivo, compu-
tational dosimetry is applied to estimate the electromagnetic field quantities inside the body. Various compu-
tational techniques have been introduced in order to tackle this problem. Due to the complicated structure of
the human body, consisting of organs with varying dimensions and geometrically complicated shapes, all
exhibiting different electrical properties, a very fine spatial resolution is needed to achieve as accurate results
as possible. The state-of-the-art approach for the computation of electromagnetic fields inside the body is to
solve Maxwell�s equations numerically in high-resolution, anatomically realistic human body models.

The first calculations of current densities inside the human body, arising from low-frequency magnetic
fields, that were based on (semi-)realistic voxel models used the impedance method and were performed by
Gandhi in 1984 [3]. In this method, the voxels are differentiated into a three-dimensional network of imped-
ances. Around the closed loop of each voxel-face the time-varying magnetic field induces a voltage which is
used to calculate the induced current density. The coupled equations for the loop currents are merged into
one system of equations that can be solved iteratively. Further details on the impedance method and their
application to low-frequency electromagnetic fields inside the human body can be found in [4–6]. The sca-
lar-potential finite-difference (SPFD) approach was introduced in 1996 by Stuchly and Dawson [7–9]. In this
approach, the magnetic field sources are represented by a magnetic vector potential and the computational
domain is discretized with the finite difference method. A more detailed description of the SPFD approach
will be given in Section 3. A comparison of both techniques and their results can be found in [10] while a recent
review of the computational methods and interaction mechanisms was published in [11].

The paper is organized as follows: In Section 2, a brief description of the used anatomy model and the used
tissue parameters is given. Section 3 covers the mathematical framework of the discrete electromagnetic
formulation. Beginning with an introduction to the finite integration technique (FIT), the electromagnetic
curl–curl equation, the SPFD approach and the new extended scalar-potential finite-differences approach
(Ex-SPFD) are presented. Section 4 presents numerical results for a test-case scenario and the validity of
the presented approach together with performance results. Following the numerical results section, an appli-
cation example of a human exposed to a low-frequency magnetic field due to a realistic source is presented.
Finally, the paper ends with a summary.

2. Anatomy model and electromagnetic properties of biological tissue

In the early days of computational dosimetry, the human body was modeled by simple geometrical struc-
tures, like prolate spheroids or ellipsoids [12,13]. Such simple models can only crudely approximate the com-
plex structure and the significant inhomogeneity of the human body. The next generation of human-body
models used for electromagnetic field calculations were voxel based [14], but yet at very coarse resolutions.
These voxel models were not directly derived from medical data, like it is state-of-the-art nowadays, but they
still approximated the shape of the human body in a more exact way than simple spheroids. The vast progress
in medical imaging during the 80�s lead to the possibility of creating digital anatomy models based on real-
word data. The Visible Human Project founded by the United States National Library of Medicine [15] formu-
lated the goal of ‘‘building a digital image library of volumetric data representing a complete, normal adult
male and female’’ in 1989. Using images from cryosectioning, digital images from computerized tomography
and magnetic resonance imaging, a collection of cross-sectional images was established and made public in
1994. Nowadays very comfortable, free-of-charge interfaces to this database exist on the internet (e.g. [16]).
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In this work the HUGO model, which has been constructed from the Visible Human Dataset, was used. The
used model offers a variable resolution ranging from 8 · 8 · 8 mm3 to 1 · 1 · 1 mm3 for the edges of the vox-
els. Each voxel is assigned one tissue type, with a total of 31 various tissue types, see Table 1 for a listing of
available tissues. In the finest resolution, the model consists of approximately 380 million voxels, representing
a 38 years old, male person of 187 cm height and an approximate weight of 114 kg. Informations about mod-
els used by other groups for computational dosimetry can be found in [17–19].

With the anatomy model providing the geometrical structure, the electromagnetic properties of biological
tissue are still needed in order to perform dosimetric simulations. The study of the electromagnetic properties
of biological tissue have been of interest for over a century now, and is still an active area in actual research.
The main challenge remains the measurement of the electromagnetic properties of isolated organs in vivo
over a broad frequency range. Since the human body consist of non-magnetic materials, the permeability
of the entire body can be set to the vacuum permeability. For the dielectric properties, Cole [20] proposed
a formula for calculating the permittivity and conductivity in a wide frequency range. In 1996, Gabriel
et al. published a large literature survey [21] combined with new measurements [22] and accompanied by
a parameter extraction for the Cole–Cole equation [23]. This results became widely accepted by the scientific
community and have been used for various dosimetric computations. The electric tissue properties used in
this article have been calculated using the extended model proposed by Gabriel et al., and are summarized
in Table 1.

Equipped with the high-resolution anatomy-model and the electric properties of tissue we are now ready to
introduce the discrete electromagnetic theory and the algorithms used for the calculation of induced current
densities in the following section.
Table 1
Available tissue types, corresponding electric conductivities and fractions of occurrence in the HUGO model (resolution: 1 mm3)

Tissue type Conductivity @ 50 Hz [S/m] % of body

Marrow 0.0016 2.74
Fat tissue 0.0195 37.51
Bones 0.02 6.78
White substance 0.053 0.48
Grey substance 0.075 0.57
Skin 0.0002 1.88
Eye 1.5 0.01
Skeleton muscle 0.23 39.20
Blood 0.7 0.66
Neuronal fabric 0.027 0.15
Eye lens 0.32 0.00
Nevus opticus 0.027 0.14
Cartilages 0.17 0.36
Mucous membrane 0.00042 0.09
Lung 0.205 3.27
Intestine 0.52 1.17
Kidney 0.089 0.32
Liver 0.0367 1.69
Glands 0.52 0.12
Spleen 0.086 0.21
Stomach 0.521 0.15
Pancreas 0.521 0.08
Bladder 0.205 0.08
Gall bladder 0.9 0.02
Intestine contents 0.5 1.73
Ventricles right 0.0827 0.08
Ventricles left 0.0827 0.16
Forecourt right 0.0827 0.03
Forecourt left 0.0827 0.03
Blood venous 0.7 0.22
Blood arterial 0.7 0.06
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3. Mathematical framework

In the beginning of this section, the FIT along with the commonly used notation is summarized, before pre-
senting the algorithms for induced current computation. Because the Extended-SPFD formulation is based on
the electromagnetic curl–curl equation for calculating the magnetic source field and the SPFD approach for
estimating the induced currents inside the conductor, both schemes will be described, prior to introducing the
Extended-SPFD formulation.

3.1. Finite integration technique

The FIT was first formulated by Weiland in 1977 [24] and has been developed further throughout the
years by numerous contributors, resulting in a extensive library of discrete electromagnetic formulations.
Only a very brief introduction will be given here, readers interested in further details of FIT are referred
to [25–28].

The FIT is based on a geometrical discretization of the Maxwell equations in the integral form. Along with
the constitutive material relations, the Maxwell equations are mapped onto an staggered, dual, orthogonal
grid pair. Instead of field quantities defined at points, integral state variables assigned to all possible geometric
primitives of the grid are used to formulate the problem. The electric voltage e

_
, the magnetic voltage h

_
, the

electric flux d
__

, the electric current j
__

, and the magnetic flux b
__

, are defined by line and surface integrals of the
elementary field values ~E (electric field intensity), ~H (magnetic field intensity), ~D (electric flux density), ~J
(electric current density), and ~B (magnetic flux density). The continuous curl and divergence operators are
expressed by the discrete operators C and eC for the curl, S and eS for the divergence on the primal and dual
grid, respectively. The discrete equations arising in terms of these operators are often referred to as the
Maxwell grid equations (MGEs). These equations are per construction exact for the used mesh pair.

The approximation in this discretization method appears when the integral voltage and flux state variables
have to be coupled for actual field computations. The material matrices Ml, Me and Mj represent the discrete
matrices of permeability l, permittivity e and conductivity j, respectively. The material matrices can be
constructed using various averaging techniques, that are beyond the scope of this article and can be found
in [29–32]. In the case of computations presented here based on a voxel model, a straightforward averaging
technique of the conductivity and permittivity over a dual facet eAn is applied.

The induced current calculations will be performed in the frequency domain, assuming that the system is in
a steady state and no transient effects have to be considered. All field quantities are time-harmonic and can be
transformed into the time domain by means of a Fourier transformation
f ðtÞ ¼ Rff � eixtg. ð1Þ
In the frequency domain the time derivative of a quantity can be expressed by an algebraic multiplication of
the complex amplitude with the factor ix.

3.2. Electromagnetic curl–curl equation

Starting with the Maxwell�s curl equations in the frequency domain,
r�~E ¼� ix~B; ð2Þ
r � ~H ¼ix~Dþ~J ; ð3Þ
either the magnetic or the electric field can be eliminated, leading to only one equation in terms of the non-
eliminated field quantity. In the case of eliminating the magnetic component, this yields
curll�1curl~E þ ixj~E � x2e~E ¼ �ix~JS ; ð4Þ

with the excitation current ~JS . Using the FIT discretization the curl–curl equation reads
½eCMmCþ ixMj � x2Me� e
_ ¼ �ix j

__

s; ð5Þ
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where Mm denotes the material matrix of the inverse permeability m = l�1. Because the displacement current is
explicitly considered, the curl–curl equation is valid in the whole frequency range, allowing the calculation of
wave propagation phenomena as well as problems in the magneto-quasistatic case, where the displacement
currents can be neglected [33]. But this generality also has its price: Simulating low-frequency fields with
the curl–curl equation (x near zero) the solution of the system lies near the static eigenmodes of the multiply
trivial eigenvalue (x = 0) of the system matrix. In exact arithmetic this is not a problem, but when solving the
system iteratively, the singular eCMmC term numerically dominates the equation, leading to a slow convergence
of the solution parts related to the eddy current losses that are governed by the ixMj � x2 Me term in
the system matrix. This effect is even more pronounced for models with low conductivity values, which
are the case for biological tissues. Therefore, Eq. (5) is augmented with a grad–div term, additionally enforcing
the relation eS½ixMj � x2Me� e

_ ¼ 0 inside the computational domain [34], which is inherently given by left
application of the divergence operator on (5). A positive (semi-)definite norm matrix MN ensures the correct
units for the augmentation term and furthermore prevents a deterioration of the condition number. The
augmented curl–curl formulation reads
½eCMmCþMj
eST

MN
eSMj þ ixMj � x2Me� e

_ ¼ �ix j
__

s ð6Þ

and will be used throughout the rest of this paper, omitting the word ‘‘augmented’’ when referred to it.

3.3. Scalar-potential finite-differences approach

The SPFD approach has been frequently used by Stuchly et al. [8,9] for the calculation of low-frequency
induced currents in the human body. It is valid in the magnetoquasistatic case [7] when the eddy current losses
are relatively small. Basically, it can be understood as an inhomogeneous stationary current field problem,
without accounting for shielding effects of conductors present in the computational domain.

Starting with an additive decomposition of the potential into a rotational part, represented by the vector
potential ~A0, and an irrotational part represented by the gradient of a scalar potential $/, we obtain
~E ¼ �ixð~A0 þr/Þ
~B0 ¼ r�~A0;

ð7Þ
and using the quasistatic continuity equation
r �~J ¼ r � ðj~EÞ ¼ 0 ð8Þ

results in the SPFD equation
�r � ðjr/Þ ¼ r � ðj~A0Þ; ð9Þ
which has to be solved inside the conductor. This formulation discretized by the FIT reads
eSMj
eST

/ ¼ eSMja
_

0. ð10Þ
In order to calculate the induced currents inside the conductor, the magnetic vector potential~A0 has to be known
inside the computational domain. This fact limits the field sources to ones that are known analytically or semi-
analytically. Furthermore, it makes this approach only valid, when shielding effects of possibly present high-
conductivematerials can be neglected entirely. For that case this formulation is very efficient. The neglect of shield-
ing effects is well justified in the case of the human body, where the conductivities are fairly low. On the other hand
this disallows the presence of high conductive material, like metallic implants, in the computational domain.

3.4. Extended scalar-potential finite-differences approach

The Ex-SPFD approach combines the advantages of the both previously presented schemes into a two-step
procedure. In the first step, the electromagnetic curl–curl equation (6) is solved with a fairly low accuracy. Be-
cause of the weak conductivity of the human body the term eCMmC converges much faster than the rest of the
curl–curl equation, so this step provides an approximate vector potential a

_
app that already describes the
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magnetic field distribution very well, but does yet not satisfy the quasistatic continuity equation eSMj a
_

app ¼ 0.
Using the same decomposition as in (7) yields
a
_ ¼ a

_
app � eST

/corr. ð11Þ
Because in the exact solution eSMj a
_ ¼ 0 has to be fulfilled, we obtain:
eSMj
eST

/corr ¼ eSMja
_

app ð12Þ
which is the SPFD equation (10), and has to be solved in the second step of the Ex-SPFD approach. It can be
understood as a divergence correction applied to the previously calculated magnetic vector potential. The cor-
rected magnetic vector potential a

_
can be calculated with Eq. (11).

At this stage it may seem that the Ex-SPFD approach is more complicated than simply solving the curl–curl
equation of Section 3.2. But this is not true when analyzing the convergence behavior of the schemes. Due to
the low conductivity values of biological tissue a very high accuracy is needed when solving the full electro-
magnetic curl–curl equation in order to obtain reliable values for the induced currents, resulting in very large
computation time. Using the two-step procedure of the Ex-SPFD approach the computational time is reduced
considerably (see Section 4 for computation times). Furthermore, additional flexibility is introduced in the
computational scheme: Each calculation step can be performed on a different grid. In the first step, a vec-
tor-based quantity is computed, demanding three degrees of freedom per grid cell, while in the second step
a scalar equation is solved, needing only one degree of freedom per grid cell. Using less core memory, this
allows in practice to choose a finer resolution for the second calculation step. This option has also been imple-
mented, using a grid transfer operator Ph

L;H , prolongating the magnetic vector potential from the coarse grid
GH, on which in the electromagnetic curl–curl equation is solved, to a fine grid Gh on which the divergence
correction is applied. For the construction of this operator, see Appendix A.

Algorithm 1. Ex-SPFD scheme

1. Solve
½eCHMm;HCH þMj;H
eST

HMN ;H
eSHMj;H þ ixMj;H � e

_
H ¼ �ix j

__

s;H ð13Þ

on a coarse grid GH with a relatively low solver tolerance, obtaining a
_

H ¼ � 1
ixe
_

H

2. (optional) Prolongate the magnetic vector potential from the coarse to the fine grid: a
_

h ¼ Ph
L;H a

_
H

3. Solve the divergence correction
eShMj;h
eST

h/h ¼ �eShMj;hP
h
L;H a

_
H ð14Þ

on the fine grid Gh

4. Apply correction to the prolongated vector potential:
a
_

h ¼ Ph
L;H a

_
H � eSh/h. ð15Þ
5. Calculate the induced currents by:
j
__

induced;h ¼ �ixMj;h a
_

h. ð16Þ
Numerical experiments proved that in the solution of the electromagnetic curl–curl equation the contribu-
tion to the current density inside the body originating from displacement currents is negligible. Furthermore,
the displacement currents are not explicitly considered in the SPFD approach. Therefore, in the first step of
the Ex-SPFD approach the full electromagnetic curl–curl equation will be solved omitting the permittivity.

With this scheme it is possible to calculate currents induced by arbitrarily shaped magnetic field sources at a
far lower computational time, than by simply solving the full electromagnetic curl–curl equation (6). Further-
more, highly conductive materials that shield the magnetic field are allowed in the computational domain,
which is an additive advantage over the classical SPFD approach. A direct comparison of all computational
times and errors of the presented approaches will be given in Section 4.
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4. Numerical results

At the beginning of this section a test case used for a performance test of the presented formulations is
introduced, followed by results in the case of equal coarse and fine grid. These results are followed by a con-
vergence study in the case where the coarse grid solution is prolongated onto a finer grid, before applying the
second step of the Ex-SPFD approach. Finally, this section ends with some remarks on the implementation of
the Ex-SPFD code.

4.1. Test case

The test case for the performance study of the presented codes is illustrated in Fig. 1. It consists of the upper
part of the human-body model, approximately starting at the hips. In the right shoulder, a small block of a
highly conductive material (conductivity = 1e6 S/m) can be inserted, representing e.g. a metallic implant. In
this example, it is used to demonstrate the validity of the Ex-SPFD approach, even when highly conductive
objects are situated inside the computational domain. The magnetic field is excited by a circular current path
in front of the chest of the model. The current inside this coil model amounts to 5 A. The model is meshed with
327,026 grid cells in the case without the conductive block (case (a)), and 329,280 cells in the case with the
block (case (b)). This number of grid cells corresponds to an approximate resolution of 8 mm. The reference
solutions for all further comparisons in this paper are results for the presented models obtained by the curl–
curl equation (6) at the maximal feasible available solver tolerance of 1e � 15. In order to distinguish the fact
that the curl–curl equation can be used to solve the entire system in one step and also the curl–curl equation is
used in the first step of the (Ex)-SPFD approach we attach a � symbol every time the curl–curl equation is used
as the first step of the (Ex)-SPFD approach.

4.2. Equal-grid case

The first numerical experiments presented in this paper discuss the case where the coarse grid and fine grid
are identical. In this case, no prolongation of the magnetic vector potential is needed. The results for case (b)
are summarized in Table 3, while results for case (a) are presented in Table 2.
Fig. 1. Test case for validation and numerical performance tests.



Table 2
Simulation results for the test case without the highly conductive block

Solver type Solver tolerance
curl–curl

Solver tolerance
divergence correction

Time (hh:mm:ss) Total time (hh:mm:ss) Global error (%)

curl–curl (ref) 1e � 15 – 21:46:00 – –
curl–curl 1e � 9 – 00:12:06 – 56.3
curl–curl 1e � 6 – 00:01:29 – 125.2
SPFD(A) 1e � 6� 1e � 9 00:00:15 00:01:51 3.4e � 3
SPFD(J) 1e � 6� 1e � 9 00:00:47 00:02:23 3.4e � 3
Ex-SPFD(A) 1e � 6� 1e � 9 00:00:30 00:01:59 1.8e � 3
Ex-SPFD(J) 1e � 6� 1e � 9 00:01:34 00:03:03 1.8e � 3
SPFD(A) 1e � 9� 1e � 9 00:00:15 00:02:32 2.0e � 4
SPFD(J) 1e � 9� 1e � 9 00:00:50 00:03:07 2.0e � 4
Ex-SPFD(A) 1e � 9� 1e � 9 00:00:30 00:12:36 2.0e � 4
Ex-SPFD(J) 1e � 9� 1e � 9 00:01:52 00:13:58 2.0e � 4

(A) denotes the FGMRES solver preconditioned by AMG, whereas (J) denotes Jacobi preconditioned CG.
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As already pointed out in Section 4.1, the reference solution used for estimation of error values is the solu-
tion of the full curl–curl equation, considering the permittivity, with the maximal in double precision feasible
solver tolerance of 1e � 15. The global error was computed in the relative power loss norm:
k j
__

kloss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j
__

ref � j
__

ÞTMj�1 j
__

ref � j
__

� �

j
__T

refMj�1 j
__

ref

vuuuut ;
corresponding to the losses in the tissue. The total time is an addition of the time required to solve the curl–
curl� and the SPFD equation, formatted as hh:mm:ss. The letters in brackets denote the solver type used for
the divergence correction step: (A) for algebraic multi grid (AMG) preconditioned flexible generalized minimal
residual method (FGMRES) and (J) for Jacobi preconditioned conjugate gradient (CG) method. All calcula-
tions have been performed on a 3.06 GHz Pentium IV machine with 2 GB RAM.

The time needed to obtain the reference solution amounts to 73 h 21 min in the case where the highly con-
ductive block is present and 21 h 46 min without the block. The very large computational times are due to the
chosen maximal solver tolerance of 1e � 15. The need of such a strict solver tolerance arises due to the differ-
ent orders of magnitude of the eCMmC term and the ixMj � x2 Me term, as stated in Section 3.2. Thus, solving
the entire system using only the curl–curl is possible but due to the high computational times not practicable.
Since the curl–curl equation does not include any approximations and thus represents a solution of the full
Maxwell equations it will be used as the reference solution. The difference in the solution times for both cases
can be explained by a severe deterioration of the condition number of the system matrix by introducing the
highly conductive block.

In the following we compare the reference solution to three cases:

� A solution of the curl–curl equation with a less strict solver tolerance and without applying a divergence
correction.

� The SPFD approach.
� The Ex-SPFD approach.

A solution of the curl–curl equation with a less strict solver tolerance and without applying a divergence cor-

rection. The errors of the curl–curl solutions obtained with a less strict solver tolerance (1e � 9 and 1e � 6) are
far larger in the case without the block than in the case containing the block (56.3% and 125.2% versus 0.8%
and 5.1%). This can be explained by the very large currents induced inside and at the surface of the block,
obscuring the details of the solution inside the low-conductive body, even when using a weighted error norm
like the power loss norm. These calculated errors demonstrate the need of the very low solver tolerance when
solving the whole system with only the curl–curl equation.
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The SPFD approach. In the simulation using the SPFD formulation the magnetic vector potential was also
computed by the curl–curl� equation but with all conductivities in the curl–curl� equation set to zero, corre-
sponding to a neglect of the shielding effects introduced by the highly conductive block. For the case without
the block the SPFD approach performs very well, exhibiting a global error of 3.4e � 3% when the curl–curl�

equation in the first step is solved with an accuracy of 1e � 6, and a global error of 2.0e � 4% when the curl–
curl� equation was solved with an accuracy of 1e � 9. When the conductive block is present the error of this
approach rises about three orders magnitude to 1.9% because the shielding effects are neglected in the com-
putation of the magnetic vector potential. As expected, an more strict solver tolerance in the curl–curl� solu-
tion has no effect on the errors. The computational time remains below 3:30 min in both cases.

The Ex-SPFD approach. The results of the full Ex-SPFD approach (without prolongation, since we deal
with equal grids in this paragraph) exhibit the lowest errors in all presented cases. In the case when no con-
ductive block is present the estimated errors are similar to the SPFD approach, but the computational time is
slightly raised: At a solver tolerance of 1e � 9 in the solution of the curl–curl� equation the global error of both
approaches amounts to 2.0e � 4% but the computational time is raised to approximately 14 min for Ex-SPFD.
On the other hand, in the case containing the higly conductive block the global error of the Ex-SPFD ap-
proach remains low at 2.2e � 3% or 2.2e � 5% for a curl–curl� solution with a solver tolerance of 1e � 6
and 1e � 9, respectively. Because we have considered the conductivity in the computation of the magnetic
vector potential, the shielding effects were considered, resulting in a more exact solution than in the SPFD
approach. When the curl–curl� equation is solved with a tolerance of 1e � 6 the time for the entire Ex-SPFD
computation amounts to 5:26 min.

For both approaches the divergence correction steps were performed using AMG preconditioned FGMRES
and Jacobi preconditioned CG. This is indicated by letters in brackets in Tables 2 and 3. In the case containing
no block the computational time of the AMG-FGMRES solver is smaller by a factor of three compared to
Jacobi-CG. The acceleration of the computation using the AMG-FGMRES raises to a factor of six in the
model containing the highly conductive block, illustrating the superior performance of the AMG precondition-
ing for badly conditioned matrices. Furthermore, multigrid preconditioning exhibits an ideal asymptotic
complexity. Therefore, it is the state-of-the art choice for large ill-conditioned systems of equations.

From the data presented in Tables 2 and 3 the superior performance of the Ex-SPFD code can be con-
cluded. This approach drastically lowers the computation time compared to a solution using only the curl–curl
equation and is, in contrast to the SPFD approach, also valid when highly conductive materials have to be
considered in the computational domain. Furthermore, the calculation of the magnetic vector potential using
the curl–curl� equation allows arbitrarily shaped magnetic field sources contrary to the classical SPFD
approach, which is restricted to analytical and semi-analytical sources. The so far presented results cover only
the case of equal grids in the two stages of the Ex-SPFD approach. The Ex-SPFD approach however also
allows the usage of two grids with a different resolution. In the next subsection a convergence study in the case
of non-equal grids will be presented.
Table 3
Simulation results for the test case containing the highly conductive block

Solver type Solver tolerance
curl–curl

Solver tolerance
divergence correction

Time (hh:mm:ss) Total time (hh:mm:ss) Global error (%)

curl–curl (ref) 1e � 15 – 73:21:00 – –
curl–curl 1e � 9 – 01:41:59 – 0.8
curl–curl 1e � 6 – 00:03:23 – 5.1
SPFD(A) 1e � 6� 1e � 9 00:00:10 00:01:38 1.9
SPFD(J) 1e � 6� 1e � 9 00:00:58 00:02:26 1.9
Ex-SPFD(A) 1e � 6� 1e � 9 00:00:23 00:03:46 2.2e � 3
Ex-SPFD(J) 1e � 6� 1e � 9 00:02:03 00:05:26 2.2e � 3
SPFD(A) 1e � 9� 1e � 9 00:00:10 00:02:26 1.9
SPFD(J) 1e � 9� 1e � 9 00:01:03 00:03:19 1.9
Ex-SPFD(A) 1e � 9� 1e � 9 00:00:26 01:42:25 2.2e � 5
Ex-SPFD(J) 1e � 9� 1e � 9 00:01:52 01:43:51 2.2e � 5

(A) denotes the FGMRES solver preconditioned by AMG, whereas (J) denotes Jacobi preconditioned CG.



0.008 0.009 0.01
0.1

0.2

0.3

0.4

0.5

gl
ob

al
 e

rr
or

coarse grid resolution [m]

0 100000 200000 300000

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Ex-SPFD
SPFD

gl
ob

al
 e

rr
or

# coarse grid cells

X ba
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4.3. Non-equal grids case

In this subsection, the performance of the Ex-SPFD formulation in the case of non-equal grids for the two
stages of the approach is presented. In this case, the vector-based curl–curl equation is solved on a coarse grid,
the vector potential is then prolongated onto a finer grid, where the SPFD equation is applied. The prolon-
gation is performed using trilinear interpolation, as described in Appendix A. The used reference solution
is a fine grid curl–curl solution with an solver tolerance of 1e � 15, which is the same as in previous section.

The global error in relation to the number of coarse grid cells for the test case containing the highly con-
ductive block is depicted in Fig. 2(a). The results of the Ex-SPFD approach are denoted by triangles, the
SPFD results by circles. The Ex-SPFD formulation achieves a smaller error for all but one coarse grid reso-
lution (119000 coarse grid cells) which is in accordance with the results for the equal-grid case. Due to the used
meshing algorithm, the error exhibits a step-like increase when reducing the number of coarse grid cells: The
voxel data is re-meshed for every resolution using an averaging algorithm over four primal facets, resulting in
a step-like increase of the error at certain resolutions where details of the model are no longer considered due
to the coarser resolution. Using a more sophisticated averaging algorithm for the material distribution like the
Galerkin projection [35] would allow to overcome this behavior, but it also would lead to non-diagonal mate-
rial matrices, and has not been implemented here. Using a double logarithmic plot of the global error versus
the grid resolution (Fig. 2(b)) the order of convergence can be estimated. The linear least-squares fit of the data
exhibits a slope of approximately 2, hence the Ex-SPFD approach is second order convergent with respect to
the coarse grid resolution.

The results presented in this subsection illustrate the performance of the Ex-SPFD approach in the case
when the curl–curl solution is prolongated before the second step of the Ex-SPFD scheme. This second step
has been implemented in a parallel environment, in order to distribute the system to be solved onto multiple
computers and handle finer resolutions.

4.4. Implementation issues

For the curl–curl solver used in this article, as well as for the meshing routines, commercially available soft-
ware is used.1 The maximum possible number of grid cells for the curl–curl solver amounts to approximately
1.5 millions when 2 GB of RAM are available, which is the limit for MS-Windows based 32-Bit architecture
PC�s. The used meshing routines can handle problems up to approximately 9.4 million grid cells on the same
platform. The solver for the divergence correction in the second step of the Ex-SPFD approach has been
1 CST EM-Studio 1.3, www.cst.com.

http://www.cst.com
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implemented in a parallel environment using the portable, extensible toolkit for scientific computation
(PETSc) [36]. The algebraic multigrid preconditioning is done by BoomerAMG included in the Hypre package
[37]. The main reason for the parallel implementation is the large memory demand of the finely resolved
models. Because the system matrix in the second step of the Ex-SPFD approach only consists of real-valued
coefficients, it is possible to solve the real and imaginary part of the system separately. The successive solution
of the system is less memory-intensive.

The AMG preconditioner accelerates the solution process for the test case by a factor of approximately five,
but it also exhibits a substantially larger memory demand. Using eight double processor cluster PC�s, all
equipped with 2 GB core memory, the largest problem solvable with the available AMG preconditioning soft-
ware consists of 5.5 million cells. The same problem can be solved with Jacobi CG on three such PCs. Hence,
to circumvent the memory restriction, the fine resolved examples presented in the next section are solved using
Jacobi CG.

5. Application example

After demonstrating the validity and the improved performance of the Ex-SPFD approach in the previous
section, a realistic application example for the new code will be introduced in this section. We simulate the
currents induced by an electric blanket considering two different wiring configurations. The two different
wiring configuration are depicted in Fig. 3. Electric blankets are quite widely spread throughout households
and typically cover nearly the entire body when used, leading to a large exposition area. Simulation results of
electric blankets, computed using the impedance method can be found in [38].

In the first configuration, the ends of the heating windings are closed by a straight wire, while in the sec-
ond configuration the back and forth wires are arranged in parallel. The wiring of the blanket is arranged at
a constant distance to the body, therefore the blanket geometry is not planar resulting in a fully three-
dimensional field source. The current inside these wires is set to 0.65 A corresponding to 150 W heating
power at a voltage of 230 V. With these parameters, the maximal magnetic field strength in close proximity
to the wires amounts to 73.7 lT in case (a) and 78.1 lT in case (b). In the first step of the Ex-SPFD
approach, the curl–curl equation was solved up to a solver tolerance of 1e � 6 on a coarse grid consisting
of about 1.5 million cells (6.2 mm). For the second step, both models were meshed with approximately 9.3
million grid cells, corresponding to a mean spatial resolution of 3.4 mm. The divergence correction is
applied using 6 PC�s (12 · Intel Xeon 3 GHz, 2 GB RAM) in parallel. This simulation took 35 min for a
solver tolerance of 1e � 9 using Jacobi CG.
Fig. 3. Two simulated wiring configurations of an electric blanket.



Table 4
Organ-wise induced current densities originating from an electric blanket

Tissue type Induced current density (A/m2)

Case (a) Case (b)

Mean Max Mean Max

Whole body 7.02e � 7 1.03e � 5 3.13e � 7 4.38e � 6

Marrow 5.44e � 8 7.89e � 6 2.54e � 8 3.43e � 6
Fat tissue 1.96e � 7 6.79e � 6 9.11e � 8 2.72e � 6
Bones 1.41e � 7 9.04e � 6 6.85e � 8 3.85e � 6
White substance 1.54e � 7 7.94e � 7 7.89e � 8 4.07e � 7
Grey substance 1.84e � 7 1.19e � 6 9.41e � 8 6.11e � 7
Skin 3.83e � 7 1.62e � 6 1.87e � 7 8.06e � 7
Eye 4.22e � 7 8.86e � 7 2.15e � 7 4.53e � 7
Skeleton muscle 6.98e � 7 1.03e � 5 3.42e � 7 4.38e � 6
Blood 1.13e � 6 5.58e � 6 5.11e � 7 2.64e � 6
Neuronal fabric 7.44e � 8 1.16e � 6 3.78e � 8 5.93e � 7
Nervus opticus 9.22e � 8 1.16e � 6 4.67e � 8 5.94e � 7
Cartilages 7.61e � 7 5.11e � 6 3.17e � 7 2.20e � 6
Mucous membrane 7.09e � 9 3.33e � 7 3.64e � 9 1.74e � 7
Lung 6.09e � 7 3.88e � 6 2.63e � 7 1.69e � 6
Intestine 1.63e � 6 7.91e � 6 6.01e � 7 3.14e � 6
Kidney 3.31e � 7 2.01e � 6 1.45e � 7 8.19e � 7
Liver 3.12e � 7 5.06e � 6 1.36e � 7 2.23e � 6
Glands 9.47e � 7 4.64e � 6 4.67e � 7 2.13e � 6
Spleen 3.25e � 7 1.14e � 6 1.55e � 7 5.39e � 7
Stomach 8.12e � 7 6.78e � 6 4.17e � 7 2.46e � 6
Pancreas 1.08e � 6 2.57e � 6 4.58e � 7 1.13e � 6
Bladder 4.34e � 7 1.18e � 6 2.06e � 7 6.39e � 7
Gall bladder 1.83e � 6 6.28e � 6 8.13e � 7 2.77e � 6
Intestine contents 1.88e � 6 9.26e � 6 7.60e � 7 3.65e � 6
Ventricles right 6.10e � 7 4.06e � 6 2.89e � 7 1.70e � 6
Ventricles left 4.70e � 7 2.59e � 6 2.32e � 7 1.11e � 6
Forecourt right 9.56e � 7 3.50e � 6 4.23e � 7 1.46e � 6
Forecourt left 8.34e � 7 2.52e � 6 3.70e � 7 1.11e � 6
Blood venous 1.71e � 6 6.48e � 6 7.70e � 7 2.86e � 6
Blood arterial 2.00e � 6 4.77e � 6 8.74e � 7 2.03e � 6

The used wiring configurations are depicted in Fig. 3.
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The organ-wise evaluated results of the simulations are summarized in Table 4. The maximum induced
current density inside the whole body amounts to 1.03e � 5 A/m2 for case (a) and 4.38e � 6 A/m2 for case
(b). Both values are situated well below the ICNIRP restriction for the general public (2e � 3 A/m2). The value
of 1e � 5 A/m2 is only surpassed in case (a) for skeleton muscle, all other current densities are below this level.
Generally, nearly all induced current densities in case (b) are smaller by a factor of two compared to case (a),
even though the maximal magnetic field intensity is lower in case (a). This effect is mainly due to the reduced
area enclosed by the current paths in case (b), and demonstrates the necessity of a geometrically realistic
modeling of the field sources in calculations of induced current densities inside the human body. Plots of
the induced current densities in the coronal and midsagittal plane for both wiring configurations are depicted
in Fig. 4. The used color ramp can be found beneath the plots. Black represents areas of lowest current den-
sities, while white domains stand for the maximal current densities of 5 mA/m2. This plot demonstrates the
results of Table 4 graphically: the induced current densities in case (b) are lower by a factor of two than in
case (a).

6. Summary

In this work, we have presented a new approach for the computation of induced current densities in
anatomically realistic, high-resolution human-body models. The proposed Ex-SPFD approach allows a



Fig. 4. Plot of the induced current densities in the coronal and midsagittal plane for both wiring configurations. The color codes used are
depicted in the color ramp beneath the plots. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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very efficient computation by applying a two-step procedure using a combination of the curl–curl equation
and the classical SPFD approach. The newly developed scheme is superior to the curl–curl formulation in
terms of computation time, and allows to handle arbitrarily shaped magnetic field sources. Furthermore,
shielding effects of highly conductive material on the external magnetic field are explicitly considered thus,
clearly extending the SPFD approach. Using two different grids for both steps of the Ex-SPFD approach
allows to choose a very fine resolution, since the second step has been implemented in a parallel environ-
ment. The drastic reduction of computational time was confirmed by the numerical experiments presented
in Section 4 using two different test cases. Finally, a realistic exposure situation was presented in Section 5.
The results of these simulations of an electric blanked with two wiring configurations, discretized with
approximately 9.3 million grid cells, indicated the need for a geometrically realistic modeling of the field
sources. Although the maximal magnetic flux in wiring case (b) was somehow higher than in case (a),
the induced current densities were reduced by a factor of two in case (b) due to the geometric shape of
the heating wires.
Acknowledgments

A. Barchanski is supported by the Deutsche Forschungsgemeinschaft (DFG) under grants WE1239/19-1.
H. De Gersem is working in the cooperation project DA-WE1 (TEMF/GSI) with the Gesellschaft für Schwe-
rionenforschung (GSI), Darmstadt.



L
h+1

1

Lh+1

P

Lh+1

2
L

h+1

3L
h+1

4

x

y

z
L

h

1

L
h

2

L
h

1

L
h

2

x

x
y

y

x

y

1
1

2

2

Fig. 5. Prolonagation of integral state quantities allocated on edges.

94 A. Barchanski et al. / Journal of Computational Physics 214 (2006) 81–95
Appendix A. Prolongation of edge-based quantities

Since the grids in both steps of the Ex-SPFD approach are non-nested, an interpolation operator is required
to prolongate the magnetic vector potential from the initial coarse grid to the fine grid used for the divergence
correction. The prolongation is performed using trilinear interpolation, as sketched in Fig. 5. The four closest
edge quantities of the coarse grid are projected on the edges of the fine grid, e.g., for a component in the z-
direction:
L
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with the factors
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In the next step the projected quantity L
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hþ1 is divided according to the lengths of the edges of the fine grid Lj
h

overlapping with LP
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h ¼
X

LPhþ1
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where wz
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DLjh
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j.

This scheme is a part of the geometric multigrid algorithm for use with the conformal FIT published in [35].
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